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Abstract. Multiple-time perturbation theory is applied to the Lorenz equations to obtain 
approximate solutions. These solutions are used to obtain the form of the mapping relating 
two successive maxima of one of the variables of the equations. Good agreement is 
obtained with the numerical results presented by Lorenz. 

1. Introduction 

Some time ago Lorenz (1963) gave the results of a detailed numerical solution of the 
set of deterministic equations 

dxldt = U ( Y  -x) ,  

dy/dt = -xz + rx - y, 

dzldt = X Y  - bz 

where U, r and b are constants, These equations originally arose in a study of thermal 
convection near criticality. The quantities x, y and z are proportional to the amplitude 
of the three most dominant normal modes of the system. Near criticality, the parameter 
r, the Rayleigh number, should be of order unity. However Lorenz solved the equations 
for r = 28 and found, surprisingly, that this set of deterministic equations gave rise to 
complicated non-periodic behaviour whose form depended critically on initial condi- 
tions. More recently these equations have received much attention as a relatively 
simple example of a 'strange attractor'. Ruelle and Takens (1971) have conjectured 
that such attractors form the basis for any theory of turbulence. Haken (1975) has 
shown that the Lorenz equations, with a different interpretation of the symbols, arise 
naturally in the theory of high-power lasers. For additional references see the recent 
review article by Shaw (1981). 

The basic property of this example of a strange attractor is that for r > r ,  (r, = 
u(v + 6 + 3) / (a  - b - 1)) there exist two unstable critical points about each of which 
the solution spirals out until its amplitude is sufficiently large when it is then attracted 
to the other critical point about which it then spirals. The jumping from the vicinity 
of one critical point to that of the other seems to take place in a random fashion. It 
is this process which leads to the non-periodic behaviour of the solution and its 
sensitivity to initial conditions. From an analysis of his numerical data Lorenz evalu- 
ated the maximum value of z during each spiral (measured from the appropriate 
critical point) and found to within his numerical accuracy that he could write 

M + 1 =  F W " )  (1.2) 
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where M,, is the maximum value of z after II spirals. Lorenz approximated the function 
F obtained numerically by an even simpler function which could be written in the 
form F = 2 M  for M s 1 and F = 2( 1 - M )  for M 3 1. Using this model function Lorenz 
went on to show that (1.2) had a non-denumerable set of solutions which were 
non-periodic and that these solutions were sensitive to initial conditions. Thus the 
basic complexity of the solutions of the differential equations (1.1) arises from the 
complexity of the solutions of (1.2), 

Equations of the form (1.2) also arise in a study of population dynamics of certain 
biological systems, in which case M ,  is to be interpreted as the population number 
after n generations. A class of such equations has received considerable attentim, 
and the following general picture of the type of solution has now emerged. Consider 
equations of the form (1.2) with F ( M )  having a single maximum in the range of M 
of interest, and F also a function of a parameter a. For small a one finds that a single 
critical point exists such that F ( M )  = M  and that this point is a stable fixed point. 
For larger values of a this fixed point bifurcates into two stable fixed points, whilst 
further increases in a give rise to further bifurcations. This process continues until 
a reaches a critical value, aC say, above which the solution becomes chaotic. That is, 
there exists a non-denumerable set of non-periodic solutions as well as an infinite 
number of periodic ones. 

The form of F ( M )  found numerically by Lorenz is not of the above form: the 
simple maximum is replaced by a cusp. However for the particular analytic form for 
F ( M )  considered by Lorenz the bifurcations are all degenerate and the solution exists 
in the chaotic regime. Thus though we have no reason to expect functions with cusps 
to give behaviour quantitatively the same as those with simple maxima, we do expect 
qualitative features such as chaos to exist. The general features of equations such as 
(1.2) are also considered in the review article by Shaw (198 1). 

In conclusion, we see that features associated with the spiralling orbits of the 
strange attractors have a direct correspondence with the solutions of a difference 
equation of the form (1.2). The non-periodic motion characteristic of the strange 
attractor is closely linked with the chaotic motion of the difference equation. Thus 
though it is undoubtedly an approximation to replace (1.1) by an equation of the form 
(1 -21, such an approximation retains the physically important concept of non-periodic 
solutions. 

The purpose of this paper is to present a method of approximation which, when 
applied to ( l . l ) ,  yields an equation of the form (1.2) without recourse to any numerical 
analysis. An explicit form for F ( M )  is obtained which is in surprisingly good agreement 
with that obtained numerically by Lorenz. 

In a recent paper Yorke and Yorke (1979) have obtained an analytic expression 
for the function F(M,,). However their work differs in two distinct ways from the 
work presented in this paper. Firstly, they obtain the form for F(M,,) by fitting data 
obtained numerically to assumed functional forms, and not by analytical methods. 
Secondly they consider the regime r < rc where the basic topology of the solution is 
fundamentally different from the one considered here. 

2. Method of approximation 

The critical points of ( l . l ) ,  that is points where the time derivatives are zero, are 
given by x i  = 6 ( r  - l ) ,  yo  = xo and zo = r - 1. (There is a further critical point, namely 
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xo  = y o  = z o  = 0, but this plays no role in the following analysis.) For r > rc these critical 
points are unstable and a linear analysis about either point shows that the time 
dependence of x, y or z is proportional to exp[(iAo+a)t]. To lowest significant order 
in an expansion in r - rc 

A i  = ct + b ( l  +U) ,  (2.1) 

CY =[CohC(c~-b - l ) ] / ( A i  +A:) ,  (2.2) 

A 1 = l + b + a ,  C ~ = b ( r c - l ) , A C = C - C o w i t h C 2 = b ( r - 1 ) .  F o r r  sufficientlyclose 
to rc, the periodic motion of the orbit associated with a timescale l / A o  is much faster 
than the change of amplitude of the orbit associated with the timescale l / a .  With 
this in mind a many-timescale method of perturbation theory has been used to solve 
(1 .1)  (see Nayfeh 1973). To this end one formally writes 

2 x =xo+&X1+& x 2 + .  . , 
where xo, xl, x2, etc, are functions of the many times t ,  t l  = et, t2 = e2t ,  etc. It is also 
necessary to order AC to be of order E '. Then the standard theory gives, to order E 3 ,  

(2.3) 
y =yo+[A cos8- (Ao/a)s in8]+A2(Fcos28+G s in28+E) ,  (2.4) 

x = x o + A  cos8+A2(B c o s 2 8 + D  s in28+E) ,  

z =zo+(AAo/~Co)[Aocos8+(1+~)sin8]+A2(Hco~28+Isin28+J) (2.5) 

where 8 = A o t  +x .  Expressions for B, D, E, F, G, H,  I and J are given in the appendix. 
In obtaining the above solution it is necessary to apply a consistency condition on 

the timescale t 2 .  This gives rise to the two following equations for the slow time 
variation of A and x :  

dA dX 2Ai -+ 2 A o A  ,A -- 4d'oACA - vA3T1 = 0 
dt dt 

and 
dA dX 2 A o A  1 -- 2A &4 - + 2AoCoACA - UA 3T2 = 0 
dt dr 

where expressions for T1 and T2 are given in the appendix. 

evolution of A : 
These two equations may be combined to give the following equation for the time 

dA/dt = aA +PA3 (2.8) 
where a is the linear growth rate given by (2.2) and 

/3 = U ( A ~ T ~ + A ~ T ~ ) / ~ A O ( A ;  +A: ) .  (2.9) 
McLaughlin and Martin (1975) have also given a perturbation theory based on 

the smallness of the ratio a/Ao. However their treatment of the non-linear terms is 
not consistent: they include some but ignore others. The advantage of the many-time 
perturbation theory is that all terms of the same order are treated equally. For example 
their equation (4.29), which has essentially the same form as (2.81, gives a value 
p = 0.0257 for the Lorenz parameters U = 10, r = 28, b = $ whilst the present theory 
gives /3 = 0.0039, at least a factor of 10 different. Both equations show that the 
Lorenz model exhibits an inverted bifurcation. This was one of the major qualitative 
features these authors discussed. 
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The above equations give an approximate analytic solution of the Lorenz equation 
which is expected to be a good approximation for r values in the vicinity of but greater 
than rc. To compare this analytic solution with the numerical results of Lorenz, in 
the next section we discuss a derivation of a mapping of the form of (1.2). 

3. The discrete mapping 

The time dependence of the z coordinate is given by (2.5). To find the maximum 
value of t during one orbit we treat A and ,y as constants and maximise with respect 
to 8. Further, since this is an expression for z to O(A3) ,  we can only find the value 
of the maximum value of z ,  M say, to this order. This procedure gives 

(3.1) M - ZO =A? = p& +plA2 + 0 ( A 3 )  

p o  = 2 + (1 + (T)~]'/~/(TC~ (3.2) 

where 

and 

={[Ai  - (I  +v)~IH +2Ao(l + u ) I  + [ A i  + (1  +~)'y)/[Ai + (1 (3.3) 

The time dependence of M is now through that of A,  which from (2.8) takes the form 

A2(t )  = a  e2"'/(u2-p e2"') (3.4) 

where u 2  is an integration constant. However before we can calculate M after n 
orbits we need to know the period of the orbit. From the form of z given by (2.5) 
we see that the time dependence is governed by 8. To calculate 8 we need to know 
the time variation of ,y. This is obtained from equations (2.6), (2.7) and (3.4), and 
we write it in the form 

where 

This last expression is the correction to A. to obtain agreement with a linear analysis. 
The last term in equation (3.5) shows that the orbital period is amplitude dependent 

and in particular shows singular behaviour for large A .  Such behaviour has been 
found numerically both by Lorenz (1963; see table 2) and by Shaw (1981; see figure 
31). However for the Lorenz parameters the period is almost constant over most of 
the range of allowed values of A .  In the following we ignore this term and consider 
the orbital motion to be periodic with period T = 27r/(A0+ y ) .  Then using (3.4) we 
can express the value of A after n orbits, A,,, in terms of the value after (n + 1) orbits, 
A,,+l. We find 

A;+1 =A;/[(l +pA;/a)  e-2"'-p/a]. (3.7) 
This relation, in conjunction with (3.1), can be used to obtain as a function of 
A&. This simplifies for the Lorenz parameters, where pl/po==-O.O1, and if such 
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terms are ignored one finds 

(3.8) 2 1 /2  
M,,+l = M f l / [ e - 2 u T ( l + p A ? 2 , / c y p E ) - ~ / c y ~ O ~  , 

&?,,+I = 1.064Mn/(1 -0.001 72M:)”’. 

which is in the form of equation (1.2). For the Lorenz parameters we have 

(3.9) 

This formula has been tested against the numerical values of Lorenz. From his 
table 2 and for values of his N from 0107 to 1643 (the orbit then jumps to the other 
critical point) values of A?, ,+I /~ , ,  agree with the analytic formula (3.9) to within a 
few per cent. This corresponds to values of A?,, ranging from unity up to 13, that is 
all values up to the singular point in the Lorenz map. The value of the period over 
most of this range is, from table 2, equal to 0.62, whereas the approximation used 
above, namely T = 27r/(AO + y ) ,  has the value 0.65 for the Lorenz parameters. Again 
this is good agreement. 

We conclude that the method of approximation given in this paper gives a good 
representation of the Lorenz map, at least for A? values less than the critical value at 
the cusp, Because of the symmetry of the Lorenz equations, the map for values 
of A? >ac is simply the mirror image of the map for A? <Mc. The two branches of 
the map correspond to orbits about the two critical points. 

It remains to obtain a value for fit, which we estimate from figure 4 of Lorenz 
to be of order 11.5.  The condition we apply is that the orbit changes from being 
about one critical point to the other when the x coordinate goes through zero. From 
(2.3) we see, to O(A3), that the minimum value of x occurs for 8 = 7r so that the 
maximum value of A satisfies xo  = A  -A2@ + E ) .  If this equation is iterated and the 
value for A so obtained substituted in (3.1) we obtain the following estimate of fit: 

(3.10) 

For the Lorenz parameters this gives f& = 11.8, which is in excellent agreement with 
the computed value. 

U c  = POX0 + [ P o @  + E) + P 1lx ;* 

4. Conclusions 

A method of analytic approximation has been applied to the Lorenz equations and 
detailed orbit solutions have been obtained; these are given by (2.3), (2.4) and (2.6) 
in conjunction with (3.4) and (3.5). These have been used to construct a discrete 
mapping for successive values of the maximum of the z variable, A?. The mapping 
is of the general form of (1.2), with F(A?) defined by (3.8) for A? <Uc and the mirror 
image about M = M C  for A?>A?c. The critical value of is given by (3.10). For 
the Lorenz parameters the form obtained for F ( M )  agrees within a few per cent with 
the values obtained numerically. Good agreement is also obtained for the period of 
oscillation and the critical value &fC. 

Appendix 

The various constants appearing in equations (2.3)-(2.5) are 

B = [5(1+ (+)2 + 3 b 2  + 12AE]/[12Co(A: +4Ai)], 



590 G Rowlands 

References 

Haken H 1975 Phys. Lett. 53A 77 
Lorenz E N 1963 J.  Atmospheric Sci. 20 130 
McLaughlin J B and Martin P C 1975 Phys. Ret.. A 12 186 
Nayfeh A 1973 Perturbation Methods (New York: Wiley) ch 6 
Ruelle D and Takens F 1971 Commun. Math. Phys. 20 167 
Shaw R 1981 Z. Nuturf. 36 80 
Yorke J A and Yorke E D 1979 J.  Stat. Phys. 21 263 


